Cluster-based probability model and its application to image and texture processing
نویسندگان
چکیده
We develop, analyze, and apply a specific form of mixture modeling for density estimation within the context of image and texture processing. The technique captures much of the higher order, nonlinear statistical relationships present among vector elements by combining aspects of kernel estimation and cluster analysis. Experimental results are presented in the following applications: image restoration, image and texture compression, and texture classification.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملEvaluation of Floorcovering Abrasion Resistance by Means of Image Processing Technique
An important factor in material quality is the time duration that materials are used (known as substance lifetime). Lifetime is a function of several factors, and among them wearing and abrasion resistances are more important than the other aspects. In addition, to the physical and mechanical properties, abrasion has a significant effect on the textiles appearance. This phenomenon considerably ...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 6 2 شماره
صفحات -
تاریخ انتشار 1997